The consortium FAIRagro (launched 2023) focuses on the domain of agrosystem research to enable researchers a FAIR and quality-assured research data management (RDM) to generate, publish and access relevant data, innovative RDM services and modern data science methods to support and advance our community.
This Poster was shown at the CoRDI conference 2023 in Karlsruhe (booth poster)
Chemotion ELN ErklärvideosChemotion ELN Erklärvideos Chemotion[1] ist ein Open-Source-System für die Speicherung und Verwaltung von Experimenten und Moleküldaten in der Chemie und deren angrenzenden Wissenschaften. Dabei besteht das System hauptsächlich aus zwei Komponenten: dem elektronischen Laborjournal (electronic laboratory notebook, ELN) Chemotion ELN[2] zur Eintragung und Auswertung von Experimenten und deren Analytik-Daten und dem Chemotion-Repositorium[3,4] zur Veröffentlichung dieser. Durch die Verknüpfung des ELNs mit dem Repositorium können Einträge einfach aus dem Laborbuch transferiert werden. Daten werden inklusive ihrer maschinenlesbaren Metadaten in dem Repositorium unter Open-Access-Bedingungen veröffentlicht und erfüllen somit die FAIR-Data-Prinzipien (findable, accessible, interoperable, reusable).[5] Diese dienen als Grundlage für nachhaltiges Datenmanagement im Rahmen der guten wissenschaftlichen Praxis.[6] Zur Nutzung von Chemotion und zur Erläuterung der grundlegenden Funktionen haben wir Erklärvideos erstellt, die Neulingen den Einstieg in das ELN erleichtern sollen. Diese Videos umfassen wichtige Themen von der Erstellung von Molekülen, über die Auswertung von Analytik-Daten, bis hin zum Teilen von Einträgen. Die Videos sind dabei in verschiedene Themenblöcke aufgeteilt und befassen sich jeweils mit konkreten Funktionen. Die Struktur der Themenblöcke und Videos können dem PDF-Dokument in diesem Zenodo-Eintrag entnommen werden. Wir bitten zu beachten, dass grau hinterlegte Videos in diesem Dokument erst in späteren Versionen des Eintrags zur Verfügung stehen werden. Chemotion ELN Erklärvideos auf YouTube Die Erklärvideos gibt es zusätzlich auch auf Chemotions YouTube Channel: https://www.youtube.com/playlist?list=PL1AonKd9WAd8n8YPXxMaGLQ5ad8PdR3OC Danksagung Die Autoren danken Nicole Jung für weiterführende Erklärungen zu den Funktionen von Chemotion und die Hilfe bei der Erstellung und Überarbeitung der Videos. Weiterhin danken die Autoren Anna Manukânc für die Hilfe bei der konzeptionellen Entwicklung der Videos. Literatur [1] Chemotion. https://chemotion.net/ (accessed 02/19/2023). [2] Tremouilhac, P., Nguyen, A., Huang, Y.-C., Kotov, S., Lütjohann, D. S., Hübsch, F., Jung, N., Bräse, S., J. Cheminform. 2017, 9, 54. [3] Tremouilhac, P., Lin, C.-L., Huang, P.-C., Huang, Y.-C., Nguyen, A., Jung, N., Bach, F., Ulrich, R., Neumair, B., Streit, A., Bräse, S., Angew. Chem. Int. Ed. 2020, 59, 22771-22778; Angew. Chem. 2020, 132, 22960-22968. [4] Tremouilhac, P., Huang, P.-C., Lin, C.-L., Huang, Y.-C., Nguyen, A., Jung, N., Bach, F., Bräse, S., Chemistry–Methods 2021, 1, 8-11. [5] Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B., Sci. Data 2016, 3, 160018. [6] Deutsche Forschungsgemeinschaft. Guidelines for Safeguarding Good Research Practice. Code of Conduct. 2019, https://doi.org/10.5281/zenodo.3923602 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] . Nützliche Links Chemotion. https://chemotion.net/ (accessed 02/19/2023). Chemotion ELN Documentation. https://chemotion.net/docs/eln/ (accessed 02/19/2023). Chemotion Repository. https://www.chemotion-repository.net/welcome (accessed 03/14/2022). Molecule Archive of the Compound Platform. https://compound-platform.eu/home (accessed 03/14/2022).
NFDI4Ing Community Meeting CC-42 2022: Überblick zu NFDI & NFDI4IngEine kurze Einführung in die Nationale Forschungsdateninfrastruktur (NFDI)und die Nationale Forschungsdateninfrastruktur für Ingenieure (NFDI4Ing). A short introduction to the (German) National Research Data Infrastructure (NFDI) and the National Research Data Infrastructure for Engineers (NFDI4Ing).
Role of Semantic Resources in Infrastructures for Data Management in Agrosystems and Landscape ResearchIn 2023, the FAIRagro project started its work as a consortium of almost 30 partnering organizations active in agrosystems research in Germany. FAIRagro is part of the National Research Data Infrastructure (NFDI) initiative with its goal to set up a cross-domain research data infrastructure (RDI) conforming to the FAIR principles. The main objective is to establish an interoperable and scalable RDI by connecting available repositories to facilitate combined data analyses. Partly, existing agricultural data repositories involved in FAIRagro already use semantic resources like vocabularies and thesauri. For example, the Smart Rural Area Data Infrastructure (SRADI) developed and maintained by the Technical University of Munich leverages metadata vocabularies like DCAT and Dublin Core, but also strives for compatibility with well established geospatial data standards as provided by the Open Geospatial Consortium. The BonaRes Repository, as another example, was launched in 2017 at the Leibniz Centre for Agricultural Landscape Research (ZALF) and manages soil-agricultural data from research projects. To address FAIR data principles, numerous open community standards, vocabularies and PIDs, e.g. INSPIRE and DataCite for metadata description, AGROVOC for keyword annotation and ORCID for author annotation are used.
Within that context, there are challenges especially regarding cross-linking of data sets and repositories and a need for cross-standard interoperability. Large Linked Data resources like AGROVOC can provide bridges through URI-based metadata annotations. For practical purposes, this however requires consistent use according to best practices, mappings and alignments. The presentation will illustrate how the FAIRagro project addresses these issues within its activities.
NFDI ToolTalk: One roof, several services: Bringing together all DataPLANT effortsDescription
Slides of the presentation given on June 08, 2022 as part of the NFDI ToolTalk series. The presentation follows up on the status reached after one and a half year into DataPLANT services discussions and developments. It will show the general concept and the already implemented services and how they could fit into either local or centralized research infrastructures. In the future these services may run on-top of future NFDI base services or integrate NFDI base service components like AAI. DataPLANT services might as well be offered to a wider community beyond fundamental plant research.
FAIRmat, Guide to Writing a Research Data Management PlanIn this guide, we will provide you with comprehensive information and practical tips specific to the fields of condensed-matter physics and materials science on creating a data management plan (DMP) that meets the DFG requirements and aligns your research with the FAIR data principles, the DFG code of conduct, and the EU open science policy. We will take you through the essential components of a DMP, provide tips on data management best practices, and offer guidance on appropriate tools and technologies. By the end of this guide, you will have the knowledge and tools necessary to create a thorough and effective DMP that not only meets the requirements of the DFG but also supports the long-term success of your research project. This guide follows the sections in the DFG checklist, and the questions to be addressed as required by the DFG are listed after each section. Although this guide is based on the requirements of the DFG, the information is not exclusive to any specific funding agency and can be used as a general guide for other research areas. Before preparing a DMP for your project, make sure to check the specific requirements for your funding agency, discipline, and research institution.