The Digital Humanities Virtual Laboratory Lab ("DHVLab", Digital Teaching and Research Infrastructure for the Humanities) at Ludwig-Maximilians-Universität München has developed a modular teaching and research infrastructure within the project framework and for students of art, history and linguistics who are particularly concerned with methods of the Digital Humanities. In the process, manuals as well as detailed descriptions of user cases have also been produced, including an introduction to dealing with databases. The manuals offer an insight into information technology fields that have been developed with practical relevance and the demands of students in the humanities in mind.
FAIR Research Data Management: Basics for ChemistsThe two-day interactive workshop "FAIR Research Data Management: Basics for Chemists" was and is offered both as an online workshop and as an in_person workshop. In both formats, the present slides were used. The concept integrates theoretical content with practical hands-on activities and discussions to enable participants to get started with a building block of research data management. In the workshop, participants will learn about different tools to help them get started and also to progress. In addition to general content such as the DFG checklist, the building blocks of research data management will be taught in a chemistry-specific way. Participants will learn the basis for FDM with chemistry-specific content. This publication is a set of slides to be used for the workshop and a schedule for the workshop. This can help trainers to plan a workshop. Also included in the table are the learning objectives, which are broken down according to Bloom's taxonomy.
RDMLA – Research Data Management Librarian AcademyThe Research Data Management Librarian Academy (RDMLA) is a free online training program for librarians, information professionals and other professionals working in a data-intensive environment worldwide. Within this framework, a wide range of different topics and content is offered, consisting of eight asynchronous self-paced learning units: introduction to RDM, research data lifecycle and “research culture and ecosystem”, stakeholders, project management, data visualization tools such as R and Tableau, introduction to data analysis, programming skills in Python and Jupyter Notebook, copyright, licensing and privacy issues, and curation and archiving of data. Each unit includes several components of the following three features: On an informational level, learning objectives are taught and provided in the form of video lectures, presentation slides and reading material. Case studies and interactive formats can be used to supplement the content. And after each learning unit, discussion questions and quizzes on the concept can be used as assessment methods.
Train-the-Trainer Concept on Research Data ManagementThis version of the 'Train-the-Trainer Concept on Research Data Management' is the English translation of the fifth updated version of the German 'Train-the-Trainer-Konzept zum Forschungsdatenmanagement'. The translation of the concept resulted from the need to address the ongoing internationalisation of science in Germany and the fact that researchers are increasingly communicating in English. Building individual skills in research data management and training multipliers in English is therefore becoming even more important. Due to the existence of the National Research Data Infrastructure (NFDI) with its subject-specific consortia, the newly approved Clusters of Excellence and Collaborative Research Centres, the need for qualified staff is growing immensely. This also applies to universities and research institutions in general. For this version, the content of all units has been revised and experiences acquired from previous online Train-the-Trainer Workshops have been integrated into the concept. This concept thus provides new, more detailed information for already experienced Research Data Management (RDM) professionals. This train-the-trainer concept addresses RDM topics in an inspirational way and delivers teaching methods at the same time. Furthermore, topics such as diversity and barrier-reduced teaching materials are addressed to create an engaging learning environment. Please note that some of the content and included materials cover specific issues that only apply to the German science community. We hope that readers of this translated version of the concept will receive useful and informative insights in the field of research data management.
Acknowledgements:
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101035821 (EUniWell #Research).
Kindly take note that this document was translated with the technical services of ChatGPT and was adapted in terms of language based on native speaker proofreading by Andrew Rennison.
Learning Resource Type
Book, Course, Drill and Practice, Lesson Plan, Worksheet
Research Data Management - an Online Introduction (HeFDI Data Learning Materials)The self-study course is characterised by a clear structuring of nine blocks (Introduction to FDM; The Life Cycle of Research Data; DMP; Metadata and Metadata Standards; FAIR and CARE Principles; Data Quality; Data Organisation; Data Storage and Archiving; Law). The individual chapters contain different media (text, image and video files), tasks and are designed to build on each other thematically. The contents are supported by examples from different disciplines with literature references and links to further platforms and sources (e.g. DFG) and the learning objectives are successively recorded.
How to be FAIR with your dataThe teaching and training manual is intended to support higher education institutions in integrating FAIR-specific content into curricula. It offers a comprehensive presentation of all FDM and FAIR topics, arranged by competence profiles, and includes practical material.
Zertifikatskurs "Forschungsdatenmanagement für Studierende": Spring School 2023 der Landesinitiative für Forschungsdatenmanagement in BrandenburgDer Zertifikatskurs Forschungsdatenmanagement (FDM) für Studierende wurde im Rahmen des BMBF- und MWFK-geförderten Projekts IN-FDM-BB entwickelt. Der Kurs berücksichtigt eine Vielzahl von organisatorischen, formalen, technischen, inhaltlichen und didaktischen Aspekten, die für die Entwicklung geeigneter Lehrmaterialien von Bedeutung sind. Der von der Landesinitiative “Forschungsdatenmanagement in Brandenburg” (FDM-BB) verantwortete Zertifikatskurs fand erstmals Anfang März 2023 als einwöchige digitale Spring School mit 30 Bachelor- und Masterstudierenden der acht brandenburgischen Hochschulen statt. Der mindestens einmal jährlich stattfindende Zertifikatskurs ist mit zwei bis vier ECTS, je nach Prüfungsumfang, anrechenbar. Der gesamte Kurs besteht aus einer vorbereitenden Selbstlernphase inkl. Quiz (ca. 10 Std.), aktiver Teilnahme an der Spring School (40 Std.) (insg. 2 ECTS) und optional einer nachbereitenden Prüfungsleistung (ca. 25 oder 50 Std., 3 oder 4 ECTS). Insgesamt elf Dozierende der Brandenburgischen Technischen Universität Cottbus-Senftenberg, der Fachhochschule Potsdam und der Universität Potsdam aus unterschiedlichen beruflichen Verantwortungsbereichen (Forschung und Lehre, Forschungsunterstützung,
Bibliothek) vermitteln die Lehrinhalte (siehe Punkt (ii)).
Die hier zur Nachnutzung bereitgestellte Materialiensammlung beinhaltet:
(A) Das Modulhandbuch des Zertifikatskurses (eine .pdf-Datei)
(B) Die gesamten Lehrskripte (eine .odp-Datei) mit folgenden Modulkursen (MK):
MK1: Einführung in das Forschungsdatenmanagement; Forschungsdaten-Lebenszyklus und FAIR Data Principles; Open Science; Übung;
MK2: Datendokumentation und Metadaten; Datenmanagementpläne; Datenmanagementpläne mit dem Research Data Management Organiser (RDMO); Übung;
MK3: Aktives Datenmanagement; Langzeitarchivierung; Kollaborative Tools und Versionierung; Übung
MK4: Datenpublikation persistente Identifizierung, Zitation; Lizenzen, Re3Data; Rechtliche Aspekte des FDM; Übung
MK5: Gute wissenschaftliche Praxis; Projektmanagement; Übung;
Diskussion, Evaluation und individuelle Beratung zur Prüfungsleistung
(C) Literaturempfehlungen (eine .pdf-Datei)
(D) Quizfragen (der vorbereitenden Selbstlernphase des Kurses). Quizfragen werden hier ohne korrekte Antworten hinterlegt, da diese im folgenden Zertifikatskurs nachgenutzt werden; Lehrenden/Dozierenden stellen wir diese auf Nachfrage gerne bereit (info-fdm-bb@listserv.dfn.de).